
N. Gu, S. Watanabe, H. Erhan, H. Haeusler, W. Huang (eds.), Rethinking Comprehensive Design: Specu-
lative Counterculture, Proceedings of the 19th International Conference of the Association of Computer-
Aided Architectural Design Research in Asia CAADRIA 2014, 000–000. © 2014, The Association for
Computer-Aided Architectural Design Research in Asia (CAADRIA), Kyoto, JAPAN

CONFRONTING THE CHALLENGES OF COMPUTA-
TIONAL DESIGN INSTRUCTION

FIRST A. AUTHOR1
1 First institution, First city, First country
{f.a.author, s.b.author}@first-inst.edu

Abstract. Many architects understand that learning to program can be
a challenge, but assume that with some time and practice anyone can
perform well enough at it. However, research from computer science
education does not support this assumption. Multinational studies of
undergraduate computer science programs reveal that a significant
number of students in their first and second year of full-time instruc-
tion still have serious misconceptions about how computer programs
work and an inability to design programs of their own. If computer
science students have trouble learning to think and express themselves
computationally, what does this say about architects' chances of learn-
ing to program well? Moreover, if common problems have been iden-
tified, can architectural educators learn anything from findings in
computer science education research? In order to determine if this re-
search is relevant to architecture, the author conducted a pilot study of
architecture students consisting of program analysis and conceptual
knowledge tests. The study found that student performance was poor
in ways similar to those revealed in the computer science education
research. Because architects face similar challenges as computer sci-
ence majors, this suggests that the discipline could benefit from more
investment in educational collaborations. In addition, empirical re-
search – from architecture as well as other fields – must play a more
substantial role in helping architects learn computational thinking and
expression.

Keywords. Computational design education; programming; computer
science education research; empirical research

1. Introduction

In recent years, computational methods, such as those found in BIM, genera-
tive scripting, energy simulation, and environmental analysis, have moved

2 F. A. AUTHOR, S. B. AUTHOR AND T. C. AUTHOR

from the fringes to the mainstream of architectural practice. As a conse-
quence, many educators and researchers have identified the need for archi-
tecture students to learn what is often referred to as computational (Menges
and Ahlquist, 2011; Burry, 2011), algorithmic (Coates, 2010), or parametric
(Karle and Kelly, 2011) thinking. Implicitly, learning to think this way with-
in the medium of computing involves learning to program. However, to be
clear, programming does not necessarily involve writing code. Specifying
procedures for a computer to follow is sufficient (Mateas, 2005; Perlis,
1961), such as when one defines parametric relationships, manipulates visual
scripting blocks, designs a simulation, etc. In all of these cases, the same
concepts and techniques for structuring, communicating, and coordinating
information and logic still apply. Thus, programming, as a general means of
expressing oneself computationally, is fast becoming an essential skill for
architects.

While there are many books and primers to teach architects programming
(e.g. Mitchel, 1987; Terzidis, 2009; Jabi, 2013), neither the text nor structure
of the lessons explicitly addresses the difficulty of the task. Unfortunately,
not much is known about how to teach programming well (Papert, 1980;
Sheil, 1983; Kay, 1996; Mateas, 2005). Indeed, within architecture, this is
not acknowledged as a significant problem. There seems to be a widely held
belief among architects that, given the right tools and enough time to exper-
iment with them, anyone can develop a sufficient amount of programming
skill. However, there is no empirical data from architecture to support this
idea. In fact, the data from other fields suggests that learning programming
in a classroom, let alone by oneself, is a significant challenge for many peo-
ple.

Two multi-intuitional international studies found that a majority of com-
puter science students could not program well even after the completion of
their first and second years of full-time study. On a test that measured pro-
gram-writing ability, the average student score was only 22.89 out of 110
points (McCracken et al., 2001). Another study that measured code-reading
skills also found that a majority of students did not perform well. Later anal-
ysis determined that close to 25% of the students appeared to be guessing
their answers to the test (Lister et al., 2004). These studies are widely cited
as evidence that programming is difficult skill to learn and to communicate
the pressing need for improvements in programming education.

The goal of this paper is to acknowledge some of the challenges of com-
putational design instruction by drawing links between data from architec-
ture students learning programming and studies performed in the field of
Computer Science Education (CSEd) research1. Two pilot studies are pre-
sented, which show that students learning programming in computational

 CONFRONTING THE CHALLENGES 3

design courses appear to have similarly poor performance as those taking in-
troductory computer science courses. An additional goal of this paper is to
argue for more empirical data collection and the establishment of a research
agenda towards improving programming instruction in architecture.

2. Two Studies of Student Programmers

In order to test whether computer science education research is relevant to
architectural education, the author conducted two small studies using materi-
als obtained from three semesters teaching a required computational methods
course at the University of XXX. Each session of the course lasted 13 weeks
with the stated objective of teaching students the concepts and application of
computation within design (see Author, 2012). The typical class size varied
from 70 to 74 students. Three-quarters of the class were undergraduates
(third year) with the remaining students from two and three year graduate
programs. An early version of the course used the Processing programming
language (Fry and Reas, 2001) and the Grasshopper scripting plugin for
Rhinoceros (Rutten, 2010). Later versions used only Grasshopper. The au-
thor performed the analysis of the student materials after the end of the
courses and expressly for the purposes of this paper.

3. Program analysis

3.1. METHODOLOGY

The objective of the first study was to identify and catalogue program-
ming errors in a sampling of student code. The students in the study were in-
troduced to Processing as part of a unit which lasted 8 weeks. During this
time, they learned the language and concepts in labs of 15-20 students. The
labs featured hands-on tutorials delivered by the author and support provided
by a TA. Once a week, all of the students met for a summary lecture. The
students completed weekly homework assignments that involved writing
programs from a specification (e.g. "write a program that inscribes a circle
inside of a square") and answering questions about their programs.

The code for the study came from an assignment to design and program a
simple rule-based "drawing machine" using Processing. The objective of the
project was to experiment with variables, loops, and conditionals -- basic
computational building-blocks -- introduced in previous weeks. Because the
students were given high-quality sample code and completed earlier home-
work assignments to practice these skills, they were assumed to have
knowledge of these structures and their proper use. Furthermore, the prompt

4 F. A. AUTHOR, S. B. AUTHOR AND T. C. AUTHOR

instructed the students to write programs that demonstrated computation ex-
pressively using clean and efficient code.

The author collected a random sample of 30 programs (out of 72 submis-
sions) and carried out the following protocol: 1) first, read the student expla-
nation of the program, 2.) run each program several times to test the output,
and 3.) review the code line-by-line and record any errors.

For the purposes of this study, errors were defined as incorrect sections of
code. This is to say, code which exhibited misconceptions or misapplications
of programming practices. It is important to note that none of the programs
in the study contained any bugs or crashes that prohibited the code from run-
ning. This can be attributed to the fact that the program had to work in order
to be accepted for credit. Instead, the errors made the code less capable of
variation, less efficient, more difficult to maintain, and more error-prone. In
other words, the programs with errors might be considered evidence of de-
signs that are procedural but do not take full advantage of the powers of
computation.

3.2. DATA AND FINDINGS

Out of the 30 sampled programs, 17 contained one or more compositional
errors – about 57%. Four consistent error types were identified: 1. Explicit
looping - a condition where the programmer writes a series of explicit state-
ments with minor variations instead of utilizing a looping construct; 2. Re-
peat conditionals: conditional statements which could be combined or nested
to better control program flow, but are instead executed in sequence; 3. Re-
dundant looping: sections of code that contain the same loop yet are repeat-
ed several times, instead of being constructed as a reusable function (or, in
later lessons, as an object method); 4. State confusion: failure to properly
keep track of system state. For instance, reinitializing variables, repeatedly
changing program flags that only need to be set one time, and resetting ob-
ject attributes (e.g. fill colour) when they were already properly established
within the code.

Table 1. Program Composition – students w/ errors

 E. LOOP R. COND’L R. LOOP STATE
Student 1 ● ●
Student 2 ● ●
Student 3 ●
Student 4 ●
Student 5 ●
Student 6 ●
Student 7 ●
Student 8 ●

 CONFRONTING THE CHALLENGES 5

Student 9 ●
Student 10 ● ●
Student 11 ●
Student 12 ●
Student 13 ●
Student 14 ●
Student 15 ●
Student 16 ●
Student 17 ●

Errors, left to right columns:

Explicit looping, Repeat conditionals, Redundant looping, State confusion

In the sample, there was little difference in the frequency of the error

types. The most common error was the use of repeat conditionals, which ac-
counted for seven of the programs with errors (41.1%). Three of the pro-
grams with errors had two or more errors.

Despite their training and the instructor's prompt, nearly 3 in 5 students
from the study submitted programs with errors1. While their programs
worked, the students with errors seemed to be missing the point of designing
computationally, producing code that lacked efficiency, flexibility, and clari-
ty. The students either did not understand that their programs were incorrect
or could not do anything about it (impossible to tell from the code alone).
Both possibilities suggest challenges for teaching programming to architects.

4. Concept test

4.1. METHODOLOGY

A second study measured student comprehension and knowledge of pro-
gramming. This group of 72 students (with a similar proportion of graduates
to undergraduates as the previous study) took a different version of the
course from the group in the first study. In response to student feedback, the
author made revisions to cover similar material using the Grasshopper visual
scripting language. Additionally, the course was changed to use a "flipped
classroom" format utilizing video tutorials to train skills before labs and peer
programming to complete homework in the labs (see Author, 2013). The
class lecture format remained the same as earlier.

The course midterm tested computational concepts using examples and
methods the students learned from Grasshopper. For instance, a question
might ask a student to name the three primary geometric transformations
(answer: move, rotate, and scale). The material on the test was derived from
units in the course and covered parametric variables (constraints, independ-

6 F. A. AUTHOR, S. B. AUTHOR AND T. C. AUTHOR

ent and dependent variables), geometric distribution, iterative patterns, to-
pology, and debugging. Questions were formatted in one of three ways: vis-
ual identifications, multiple choice, and short answers. The test was adminis-
tered to each lab section and was open-note and open-book. Students also
had access to the course website and Grasshopper during the test. A research
assistant compiled the results and the author verified them.

In 2013, a second group of students took the concepts test, but with a
change in pre-test preparation. A colleague suggested the format of the first
quiz might have affected the results because it was different from the way
students were used to thinking about the subject. To account for this differ-
ence, the author showed the students examples of the question format a week
before the test. In the second test, the format of the questions remained the
same as the first version, but the answers changed.

4.2. DATA AND FINDINGS

The collected data is listed in the Table 2 below. The average score on the
comprehension test was 72.9% correct. Roughly a third (34%) of the stu-
dents in both classes did not receive a satisfactory (passing) grade on the
test.

Table 2. Comprehension test – 2012 class vs. 2013 class

 V. VAR C. VAR DIST PAT S. TOP M. TOP S. DEB V. DEB TOT

2012 74.1% 94.0% 48.6% 85.4% 48.3% 74.9% 83.2% 49.1% 72.7%

2013 94.0% 96.3% 48.2% 69.4% 40.5% 67.2% 68.4% 68.6% 73.0%

AVE. 84.1% 95.2% 48.4% 77.4% 44.4% 71.1% 75.8% 58.9% 72.9%

Concepts, from left to right columns:

Variables (visual ID), Variable concepts, distribution patterns, Topology (mult. choice), To-
pology (short answer), debugging (short answer), debugging (visual ID), total score

Another interesting finding is that an increase in preparation did not seem
to have a significant effect on the overall score. In fact, the difference in av-
erage scores between the two groups was less than 1%. However, there were
greater differences in individual categories. Of the second group's scores,
performance on questions about variables – already fairly high at an average
of 82.6% correct – improved, as did visual debugging. In other categories,
performance actually decreased an average of 11.5%. Whether this was due
to overconfidence (because the students were told what kinds of questions to
expect) or some other factor is unknown. More notable are the low average
scores for geometric distribution patterns (48.4% correct) and short answer

 CONFRONTING THE CHALLENGES 7

topology (44.4%) questions. Furthermore, while performance on visual de-
bugging questions improved with preparation, it remained another low-
scoring category (58.9%). Although students had access to both their notes
and the software during the test, they were unable to correctly answer the
prompts. Overall, their performance suggests that they did not have a firm
grasp of basic computational concepts.

5. Discussion

The results of the two pilot studies imply that, similar to the McCracken
et al. and Lister et al. studies, architecture students in an introductory course
perform poorly with program-writing (composition) and conceptual / code-
reading (comprehension) tasks. Regardless of one's professional orientation,
a majority of novices appear to be challenged by learning to program.

Many of the specific problems found in the architecture student studies
are familiar to CSEd researchers. For instance, in Papert's (1981) study of
children writing LOGO programs, he observed many students writing ex-
plicit statements instead of iterative loops. du Boulay (1986) and Pea (1984)
recorded this naïve programming behaviour in groups of adults as well as
children. Other studies noted how novices struggle to understand program
flow with loops and conditionals (Soloway et al., 1982; Brooks, 1990;
Shackelford et al., 1993). Sleeman et al. (1986) investigated the many ways
students have trouble determining the state of variables. Descriptions of the
four types of errors from the program analysis can all be found in the above
studies.

Some of the poor performance on the comprehension test can be attribut-
ed to students learning the commands of the language, which is often a prob-
lem (though not a lasting one) for novices (Soloway, 1986). A reason why
many students continue to have problems understanding programs is that
they learn commands and syntax in rote patterns, but do not comprehend the
conditions under which they apply (Brooks, 1990). This could be a reason
why, when asked questions about topological inputs/outputs and distribution
patterns, most of the students answered incorrectly. The students likely
memorized the implementation pattern – which gave them results in Rhino –
without knowing how the pattern worked. Pea (1984) famously referred to
this as behaviour as "production without comprehension." Still, if this was
the case, it is interesting that so few of them could not manifest the patterns
during the test using Grasshopper and work backwards to observe the condi-
tions. This would seem to be a skill that could be taught.

The visual debugging activity on the test also gave many students trouble,
with only 58.9% of students answering correctly on average. For this par-

8 F. A. AUTHOR, S. B. AUTHOR AND T. C. AUTHOR

ticular question, students were shown screenshots of a malfunctioning pro-
gram along with images of the script that created it. The students were asked
to define the error and explain how to correct it. They did not have to write
any code; only explain the solution. The bugs should have been familiar as
they were selected out of common occurrences in student programs and ex-
plicitly discussed in class. While a majority of the students (85%) correctly
identified the bug, only half of those students (on average) could explain the
cause. Debugging is known to be another challenging aspect of program-
ming (Spohrer and Soloway, 1986; Winslow, 1996), but this particular in-
stance did not ask students to fix the program. If the students were told to
make the program work in Grasshopper, they might have succeeded through
novice "hacking" behaviours (Leron, 1985; Pea, 1984) – essentially guessing
with combinations – and might not have needed to know why the program
worked. However, when asked to explain their solution, they could not.
Throughout the test, the students presented evidence that many of them did
not seem to comprehend what was actually happening within their code.

The findings of the architecture study seem to agree with the general
findings of the computer science studies, but more than this, the CSEd re-
search seemed to shed light on the particular problems of the architecture
students. In this sense, it would appear to be relevant.

 This discussion introduced only a small sampling of the CSEd research
already available to those who might apply it to computational design in-
struction. Without reviewing it all, the point should be clear: the problems
architecture students have learning to program are not new (the same prob-
lems existed nearly 30 years ago!), nor are they specific to the particular
software or language architects may use. Rather, they are something that
many professions have in common. If more architectural educators were fa-
miliar with these problems, and addressed them while teaching how to de-
sign with computational tools, student performance might improve. In the
future, perhaps our field can learn from and contribute to solutions from oth-
er computational professions, as well.

6. Conclusion

The pilot study found that architecture student performance was poor in
ways similar to those revealed in the computer science education research. A
majority of architecture students in the study demonstrated problems with
program comprehension and composition. The implication of the study is
that developing computing aptitude appears to be a universal issue; computa-
tional expression is difficult for many people. This research seems to indi-
cate that whether architecture students are self-taught or taught explicitly,

 CONFRONTING THE CHALLENGES 9

there is much work to be done in helping them learn how to master computa-
tion. And so, while some architects may have a talent or drive that enables
them to learn computational design thinking on their own, architectural edu-
cators should not mistake the performance of an exceptional few as the
norm. The evidence suggests that teaching and learning computation is a
challenging educational problem worthy of further research. If all architects
are to learn computational design, researchers and educators must move be-
yond folk pedagogy and anecdotes. Empirical research – from architecture as
well as other fields – must play a more substantial role in helping architects
learn computational design thinking.

Endnotes
1. See (Guzdial, 2007) for a compact overview of the field.
2. It is important to note a few details about the program analysis study that may have

influenced the findings. First, the conditions were not well controlled, as they might
be in a laboratory experiment. The students were not all asked to write the same pro-
gram. Thus, the task was one of composition and design, and not a straightforward
test of programming ability. Second, and related to the first, the students self-reported
what they intended to create and decided what to submit for the project. It may be that
other students had similar misconceptions, but removed parts of their code that did not
work or they did not understand. In addition, it is likely that school culture and peer
expectations affected the choices students made with their assignments. These details
do not disqualify the findings, but they must be taken into account. Most architecture
students learn and use programming in a design context, so examining their work this
way, although it lacks many experimental controls, may have more authenticity.

References
Brooks, R., 1990: Categories of programming knowledge and their application, International

Journal of Man-Machine Studies 33(3): 241-246.
Burry, M., 2011: Scripting Cultures: Architectural design and programming, John Wiley &

Sons.
Coates, P., 2010: Programming.architecture, Routledge.
du Boulay, J. B. H., 1986: Some difficulties of learning to program, Journal of Educational

Computing Research 2(1): 57-73.
Guzdial, M., 2007: CS Education -- Guzdial's Blog, October 5 – November 7, 2007.,

retrieved August 2, 2013, from http://home.cc.gatech.edu/csl/uploads/6/Guzdial-blog-
pieces-on-what-is-CSEd.pdf.

Jabi, W., 2013. Parametric Design for Architecture. London, Laurence King Publishing.
Kay, A., 1993: The Early History of Smalltalk, ACM SIGPLAN Notices, 28(3): 69-95.
Karle, D. and Kelly, B., 2011: Parametric Thinking, in Parametricism (SPC) ACADIA Re-

gional 2011 Conference Proceedings.
Leron, U., 1985: Logo Today: Vision and Reality, Computing Teacher 12(5): 26-32.
Lister, R., E. S. Adams, et al., 2004: A multi-national study of reading and tracing skills in

novice programmers. Working group reports from ITiCSE on Innovation and technology
in computer science education. Leeds, United Kingdom, ACM: 119-150.

Mateas, M., 2005: Procedural Literacy: Educating the New Media Practitioner, On The Hori-
zon. Special Issue. Future of Games, Simulations and Interactive Media in Learning Con-
texts 13(1).

10 F. A. AUTHOR, S. B. AUTHOR AND T. C. AUTHOR

McCracken, M., V. Almstrum, et al., 2001: A multi-national, multi-institutional study of as-
sessment of programming skills of first-year CS students. Working group reports from
ITiCSE on Innovation and technology in computer science education. Canterbury, UK,
ACM: 125-180.

Menges, A. and Ahlquist, S. (Eds.), 2011: Computational Design Thinking, Wiley.
Mitchell, W. J., R. S. Liggett, et al., 1987. The art of computer graphics programming, Van

Nostrand Reinhold co. New York.
Pea, R. D. and D. M. Kurkland, 1984: On the cognitive effects of learning computer pro-

gramming, New Ideas in Psychology 2: 137-168.
Reas, C. and B. Fry, 2006: Processing [computer software].
Rutten, D., 2010: Grasshopper [computer software], Seattle: McNeel.
Papert, S., 1980. Mindstorms: children, computers, and powerful ideas. Cambridge, Perseus

Publishing.
Perlis, A. J., 1961: The Computer in the University. Management and the Computer of the

Future, MIT Press.
Shackelford, R. L. and A. N. Badre, 1993: Why can't smart students solve simple program-

ming problems?, International Journal of Man-Machine Studies 38(6): 985-997.
Sheil, B. A., 1983: Coping With Complexity, Information Technology & People 1(4), 295 -

320.
Sleeman, D., R. T. Putnam, et al., 1986: Pascal and high school students: A study of errors,

Journal of Educational Computing Research 2(1): 5-23.
Soloway, E., 1986: Learning to program = learning to construct mechanisms and explana-

tions, ACM. 29: 850-858.
Soloway, E., K. Ehrlich, et al., 1982: What Do Novices Know About Programming? Direc-

tions in human-computer interaction. B. Shneiderman and A. Badre. Norwood, NJ, Ablex
Publishing: 27–53.

Spohrer, J. C. and E. Soloway, 1986: Novice mistakes: are the folk wisdoms correct?, Com-
munications of the ACM 29(7): 624-632.

Terzidis, K., 2009: Algorithms for visual design using the processing language, Wiley.
Winslow, L. E., 1996: Programming Pedagogy -- A Psychological Overview, SIGCSE Bulle-

tin 28(3): 17-25.

