
PROCEEDINGS
2010

26th National Conference on the Beginning Design Student

College of Arts + Architecture
The University of North Carolina at Charlotte

18–21 March 2010

made:
Design Education

& the Art
of Making

made:
Design Education

& the Art
of Making

MADE: Design Education & the Art of Mak-
ing examined the role of making past, present
& future, both in teaching design and in the
design of teaching. The conference addressed
theories & practices addressing fabrication &
craft in all studio disciplines, and to take mea-
sure of their value in pedagogies of beginning
design.

Paper presentations delivered a set of eight
themes derived from the overall focus on Mak-
ing. The team of moderators drove the agenda
for these themes, and arranged paper presen-
tations into specific sessions indicated by the
schedule. Abstracts were reviewed in a blind
peer-review process.

Conference co-chairs:

Jeffrey Balmer & Chris Beorkrem

Keynote speakers:

Simon Unwin
David Leatherbarrow

Session Topics

Making Real
Moderator: Greg Snyder
Making Virtual

Moderators: Nick Ault, David Hill
Making Writing

Moderators: Nora Wendl, Anne Sobiech-Munson
Making Drawings

Moderators: Thomas Forget, Kristi Dykema
Making Pedagogy

Moderator: Michael Swisher
Making Connections

Moderator: Janet Williams, Patrick Lucas
Making Masters

Moderators: José Gamez, Peter Wong
Making the Survey

Moderators: Emily Makas, Rachel Rossner
Open Session

Moderators: Jennifer Shields, Bryan Shields

Paper abstract reviewers

 · Silvia Ajemian · Nicholas Ault · Jonathan Bell · Julia Bernert
 · Gail Peter Borden · Stoel Burrowes · Kristi Dykema
 · Thomas Forget · Jose Gamez · Laura Garafalo
 · Mohammad Gharipour · David Hill · Tom Leslie
 · Patrick Lucas · Emily Makas · Igor Marjanovic · Andrew McLellan
 · Mikesch Muecke · Gregory Palermo · Jorge Prado · Kiel Moe
 · Marek Ranis · Rachel Rossner · Bryan Shields · Jen Shields
 · Greg Snyder · Ann Sobiech- Munson
 · Michael Swisher · Sean Vance · Nora Wendl
 · Catherine Wetzel · Janet Williams · Peter Wong · Natalie Yates

Copyright ©2110 School of Architecture, The
University of North Carolina at Charlotte

Offered through the Research Office for Nov-
ice Design Education, LSU, College of Art and
Design, School of Architecture

SKETCHING WITH CODE:
DEVELOPING PROCEDURIAL

LITERACY IN EARLY
ARCHITECTURAL EDUCATION

Making Virtual

NICHOLAS S. SENSKE, DOCTORAL
CANDIDATE
UNIVERSITY OF MICHIGAN

Introduction

Programming does not have a good reputation
in architecture. Older designers might remem-
ber having to learn FORTRAN, PASCAL, or
some other programming language when they
were in school. For most, it is not a fond mem-
ory. Early attempts at teaching programming to
architects focused on tasks which were either
too mundane (e.g. drawing and spreadsheets)
or too esoteric (theory-driven applications
such as shape grammars) to hold the students’
interest. Besides, in a few years, program-
ming seemed to be obsolete. When software
with direct manipulation1 interfaces became
available it seemed to make more sense to
push vertices around with a mouse than with
code. Moreover, one didn’t need to subscribe
to a complex theory of design to do it. Most
students who had to sit through these early
courses never programmed again. 2

But perhaps it is time to revisit the idea of
programming in architecture. In the first half
of this paper, I argue that basic computer pro-
gramming has an important role to play in
beginning design education. In the second, I
propose a pedagogical framework for improv-
ing how it may be taught.

I. Procedural Literacy

While direct manipulation interfaces have
made working with computers easier, they do
not leverage the full potential of computa-
tion. Most architects today still perform much
of their work by hand, drawing and updating
every individual line and surface. But this may
soon change. The next generation of design
software involves indirect manipulation, speci-

1	 Direct manipulation is the interface paradigm
most users experience today. It involves interacting
with graphic symbols (i.e. icons) through pointing
and selecting.

2	 McCullough, Malcolm. “20 Years of Scripted
Space.” Architectural Design 76 4 (2006): 12-15.

fying instructions, rules, and relationships so
the computer can perform much of the mun-
dane work itself. This is known as computa-
tional production and it has the potential to
dramatically expand our capacity for mental
and creative labor. It is already transforming
other professions such as stock trading, biology,
and journalism, among others, and is likely to
do the same for architecture in the near future.
Computational production is not an augmen-
tation of existing practices, but a redefinition3;
a different way of working than people are
accustomed. Moving forward, it is likely to be
the dominant method of architectural design.
As such, it should be taught to students early
in the curriculum, in parallel with other ways
of making and considering design. However, in
many architecture programs, one finds several
examples of computational production – para-
metrics, generative design, dynamic architec-
ture, data integration, etc. – taught as separate,
advanced subjects. There is no provision made
for a basic course in computation, a founda-
tion in the concepts and mindset which should
be prerequisite for these advanced labs and
studios.

Mastering computational production
involves learning a particular set of tropes and
skills, but most importantly, adopting a differ-
ent outlook. Computers are machines whose
operation is defined by procedures. As such,
the key to working well with computation is
to understand process. For instance, most of
the tools we work with are “black boxes”. One
can interact with the controls on the outside,
but may not know how or why the tool works.
With computation, these details are impor-
tant. The operational logic of a computational
system is often comprised of complex chains
of cause and effect. Thus, one cannot make

3	 Pea, Roy D. “Beyond Amplification: Using the
Computer to Reorganize Mental Functioning.” Educa-
tional Psychologist 20 (1985): 167-82.

any assumptions about how a program works
based on input and output alone. Under-
standing process, then, is critical to making
sense of these systems. To cite another exam-
ple, because computers can execute billions
of procedures quickly and without error, they
are capable of feats no human could achieve.
Designers must learn to think and act at a dif-
ferent scale of production, beyond what they
can touch or observe themselves. Last, design-
ers are typically dependent upon others for
their software tools. They are used to having
the same tools as other designers and working
under a set of inflexible limitations. But, with
the proper procedural description, a computer
can become nearly any tool. Taking full advan-
tage of computation involves a faculty with
abstraction, the ability to improvise with small
programs as part of one’s personal process.

Procedurality is a unique property of com-
puters as a medium; what every computational
artifact or technique has in common. To get
the most out of their software and to recog-
nize and overcome its limitations, designers
need to be able to think procedurally: to write
procedures to create effects and anticipate the
effects of a given procedure.4 Moreover, archi-
tects must be able to translate their knowl-
edge of design into the realm of computation,
considering how they design and even what
design is. Without an understanding of process,
designers are limited in their approaches and
disadvantaged when learning computational
tools. And so, students need to learn basic
procedural literacy: how to read, write, and
reason with procedures. To achieve this literacy,
they must learn how to program.

While it may be possible to learn a kind of
procedural literacy using analog means (study-
ing cooking, for instance), transfer of knowl-
edge from one domain to another is difficult.5
Since students will be applying procedural
thinking with computers, it makes sense
that they learn it with computers. Moreover,
instructions for a computer are different from
those among humans. For example, computer
code requires explicitness; human language

4	 Sheil, B.A. “Coping with Complexity.” Information
Technology & People 1 4 (1983): 295 - 320.

5	 Perkins, D. N., and Gavriel Salomon. “Are Cogni-
tive Skills Context-Bound?”, 1989. 16-25. Vol. 18.

is full of inference and assumptions.6 In this
sense, code is useful because it is a general
language for describing process which is both
human and machine-readable. However, the
particular programming language studied is not
important. Rather, the goal should be to learn
the concepts and structures shared by all pro-
gramming languages.7 The expectation is not
for students to become software developers.
Procedural literacy is just that; literacy. While
most people know how to read and write, not
everyone is a professional novelist. But like
writing, designers should learn programming in
order to be able to express themselves, to nav-
igate their culture, and, most importantly, to
think.

An early course in programming, which helps
train students to work with process, may serve
as a useful foundation, something that will
have relevance despite changes in technol-
ogy. The challenge is that learning program-
ming is difficult. By a rough estimate, nearly
35% of computer science students drop out –
even in the best programs.8 Of those who do
graduate, many lack a basic understanding of
programming concepts.9 Some would believe
that programming is hard because it depends
upon humans writing (seemingly) cryptic code.
They argue that a better language or graphi-
cal interface is the solution. But the details of
programming languages don’t present a prob-
lem for novices very long. Even young children
can master them, given enough time.10 After
a semester, syntax is no longer a problem for

6	 Larsen, SF. “Procedural Thinking, Program-
ming, and Computer Use.” Proceedings of the NATO
Advanced Study Institute on Intelligent Decision Sup-
port in Process Environments. Ed.

7	 Mateas, Michael. “Procedural Literacy: Educating
the New Media Practitioner.” On The Horizon. Special
Issue. Future of Games, Simulations and Interactive
Media in Learning Contexts 13 1 (2005).

8	 Guzdial, Mark, and Elliot Soloway. “Computer Sci-
ence Is More Important Than Calculus: The Challenge
of Living up to Our Potential.” ACM, 2003. 5-8. Vol.
35.

9	 Clear, Tony, et al. “The Teaching of Novice Com-
puter Programmers: Bringing the Scholarly-Research
Approach to Australia.” Tenth Australasian Computing
Education Conference (ACE2008). Ed.

10	 Kay, Alan. “The Early History of Smalltalk.” ACM
SIGPLAN Notices 28 3 (1993): 69-95.

ncdbs 2010

most users. It is the procedural errors and the
design of procedures that remain an issue.11

While better tools can help eliminate unnec-
essary details and connect computational
ideas to domain knowledge, they can’t elimi-
nate the thinking required. As Michael Mateas
points out, even with the perfect interface— if
we could simply tell the computer what we
wanted to do – we would still need to be able
to design and describe procedures. No matter
how intelligent the software, “expressing ideas
will always take work”.12 Procedural thinking
won’t emerge spontaneously from better tools.
The problem with learning programming is not
technological, it is psychological and cultural.13
The solution must be educational.

The fact is that students don’t learn enough
about process in traditional programming and
digital media courses. Instead, these courses
tend to focus on the surface details of code,
the syntax and commands.14 These details are
necessary but not sufficient for procedural liter-
acy. In addition, students are often taught com-
putational tropes using rote tutorials. While
following tutorials enables them to attempt
more sophisticated projects, the knowledge
they learn is brittle. If a student encounters
a context which is different from the origi-
nal tutorial, they may not be able to recall the
technique or apply it properly. Moreover, being
given the steps to implement something is not
the same as deriving those steps oneself. Tuto-
rials do not teach students how to design their
own procedures or why the procedures within
the tutorial are structured a certain way. Stu-
dents need commands and patterns, but they
also need a higher order framework for making
sense of them in the context of their work. This
is what is missing from most pedagogy of com-
putational production.

11	 Linn, Marcia C. “The Cognitive Consequences of
Programming Instruction in Classrooms.” 1985. 14-29.
Vol. 14.

12	 Mateas, Michael. “Procedural Literacy: Educating
the New Media Practitioner.” On The Horizon. Special
Issue. Future of Games, Simulations and Interactive
Media in Learning Contexts 13 1 (2005).

13	 Sheil, B.A. “Coping with Complexity.” Information
Technology & People 1 4 (1983): 295 - 320.

14	 Soloway, E. “Learning to Program = Learning to
Construct Mechanisms and Explanations.” ACM, 1986.
850-58. Vol. 29.

How can architects learn procedural liter-
acy? Perhaps how they already learn visual lit-
eracy. Sketching is one of the first courses in
the architectural curriculum; a foundation for
all courses to follow. It teaches architects how
to draw, but more importantly, how to think
about form and design. Its rigorous nature and
progression from concrete to abstract concepts
promotes the development of a robust men-
tal model for representation. As such, I pro-
pose that we ought to teach programming like
a sketching class.15

II. Sketching in Code

Instead of instructing students how to oper-
ate a programming language as one might an
industrial tool, educators should teach com-
putation as a flexible medium for thinking. In
the remainder of this paper, I will detail how

“sketching with code” might serve as a model
for achieving such a goal.

Motivation

Most people find programming intimidating.
In my experience, designers often have anxi-
ety about learning it because they don’t con-
sider themselves proficient in math and logic.16
At the very least, they believe programming
falls outside of their profession. It is impor-
tant to address this anxiety early because how
a person feels about what they learn can be as
important as how they are taught. To a certain
extent, students will do whatever is asked of
them, but if they lack confidence in themselves
and are uninterested in the material, their
experience is less likely to be productive.

We learn best when we are in an environ-
ment in which we feel capable and supported.
Consider how gymnasts practice their routines
with guide ropes, pads, and nets. Because they
are less afraid of getting injured if they fall,
they can place more of their effort on improv-
ing their performance. Similarly, in design edu-
cation, sketching class is a safe environment

15	 The sketching metaphor is not my own inven-
tion. It is part of a tradition of pedagogical program-
ming languages such as Processing, Design by Num-
bers, and Logo, which are designed to enable users to
create visual forms with a minimal amount of code. I
take the efforts of these languages and their creators
as a pedagogical jumping-off point.

16	 Nor would they want to be, as those things seem
like the very antithesis of creativity to most designers.

in which one can learn to draw. There is no
expectation of perfection. The sketchbook is a
place to try things, to repeat them, and to fail
without penalty. False-starts and mistakes far
outnumber one’s “good” sketches. And that’s
okay. In sketching class, students might lack
self-confidence at first, but they are willing to
try. This is the earnestness we ought to dupli-
cate in an early programming course.

Calling programs sketches, although it is a
small gesture, can help ease students’ appre-
hension. As a metaphor, it connects what they
are doing to architecture and sets the expec-
tation that their programs will be short and
rough (see: Practice). If students know they
aren’t expected to be great programmers right
away, they may be more willing to suspend
their fear and make an effort.

Practice

To learn a craft — to develop skills and an
intuition for a medium — demands a fair
amount of hands-on practice. A sketching class
revolves around this notion. Students draw and
they redraw. Repetition and refinement is the
order of the day. They fill entire sketchbooks
with the shared understanding that their goal
is not a well-refined piece, but rather learning
how to draw.

A first programming course should be a simi-
lar experience. But instead, students are intro-
duced to programming in advanced labs or stu-
dios where they might only implement a few
programs over the course of a semester. This is
simply not enough practice, and of insufficient
variety, to get a feel for the complexities and
contradictions of procedural work. The typi-
cal pedagogy of lengthy tutorials and multi-
week projects implicitly emphasizes product
over process; following instructions and get-
ting something to work (by any means neces-
sary) rather than understanding how it works.
Students may write programs, but they do not
necessarily learn how to program.

As with any craft, the best way to learn to
program - and to learn from programming -
is to do a lot of it. Like a sketching class, an
introductory programming course ought to
focus on a rigorous sequence of small exer-
cises designed around the fundamentals of the
medium. I taught a course at the University of

Michigan last fall17 with this idea which I cite
as one example of how to implement this in
the classroom.

In a typical hour of my course, I had students
write as many as eight to ten small programs in
Processing. That might sound like a large num-
ber, but these “sketches” consist of only a few
lines of code. With careful planning, a sketch
can produce sophisticated and interesting
visual output which illustrates the concept at
hand. Because the programs are so short, stu-
dents have an easier time following the flow of
the code. Also, if a student makes a mistake or
has a misunderstanding, it can be diagnosed
quickly. Like a drawn sketch, these programs
are not expected to be efficient or flawless, but
rather an opportunity to learn.

A traditional programming lecture might
demonstrate the same number of examples
as my class in the same amount of time, but
I believe there is a benefit to having students
type the code and observe the results for
themselves. The experience of coding engages
more senses and is more involving than merely
watching the instructor. Once students have
made their sketch, they can experiment and
try different options on their own, testing the
limits and potential of the concept. They can’t
do this if the instructor is merely showing the
example to them (and many of them won’t do
it at all outside of class). This also gives them
a bit of room for creativity, which can be more
motivating than following along with fully-pre-
scribed examples.

Ultimately, my students wrote far more pro-
grams than they might in a typical program-
ming class. While a student working on a
tutorial or a studio project might be stuck
debugging the same handful of loops, a stu-
dent in a sketching class, as in my example,
could write and experiment with dozens of
loops across a multitude of contexts. In my
experience, increasing students’ practice time
gives them a more robust understanding of
computational concepts – where and when to
apply them; exceptions, etc. – and helps them
grasp the medium as a whole.

17	 Course website at: http://arch506-f09.tcaup.
umich.edu/

ncdbs 2010

Cognitive Loading

Many computation courses involve too much
design. Students are expected to learn pro-
gramming and apply it fluently at the same
time. Even in an advanced course, this is
unreasonable.

Abstraction and synthesis cannot occur
while one is still learning to comprehend the
medium. It’s like learning to drive a car. At first,
there are so many unfamiliar details to monitor

— steering, gas, signals, etc. — that navigat-
ing the vehicle to a destination is often more
than a person can handle. Until the new driver
is comfortable with the controls, they aren’t
going anywhere.

In cognitive science, this idea is known as
cognitive loading. The more things one has to
keep in active memory, the more difficult it is
to perform well. One of the reasons program-
ming is so challenging is because it has a sub-
stantial cognitive load.18 Even in basic pro-
grams, there are many elements to keep track
of: proper syntax, remembering commands,
program flow, variable states, and so forth.
Adding design (which is also a complex task) to
the mix may be asking too much of novices.

With traditional sketching, the constraints
of the course allow students to gain familiar-
ity with the nuances of the medium. Students
are not expected to think up original work or
innovative methods. As such, they can focus
on developing skills and learning a set of prin-
ciples from drawing which they can apply
to form and design. In a basic programming
course, the same idea should apply.

Cognitive loading extends to lesson plans, as
well. Too many details or prerequisites and stu-
dents can easily become lost and confused. To
alleviate this, it can be helpful to remove any
unimportant details that might slow students
down, especially when introducing a new con-
cept. For example, having students write their
programs from scratch might be realistic, but
for novices it introduces more details to track
and opportunities for errors. Students might
so much spend time and effort typing and cor-
recting punctuation errors, that they become
18	 Guzdial, Mark. “How We Teach Introductory
Computer Science Is Wrong.” Communications of the
ACM (October 8, 2009). Accessed January 10, 2010
<http://cacm.acm.org/blogs/blog-cacm/45725-how-
we-teach-introductory-computer-science-is-wrong/
fulltext>.

distracted from the main idea of the lesson. To
help reduce cognitive load, instructors can pre-
pare programs ahead of time and have stu-
dents modify or add small sections to them.
This method of turning complex programs into
simplified sketches makes it possible to cover
more material with greater depth.

Although programming will never be as sim-
ple as sketching with a pencil and paper, to
teach it well, we ought to be wary of its com-
plexities and seek to reduce them wherever we
can.

Transfer

An important goal of learning is to be able to
apply knowledge and skills learned in one con-
text to other situations. In education this idea
is known as transfer19. With procedural literacy,
the hope is that computational concepts and
thinking skills will transfer to any software or
design challenges students may face.

The problem is that most programming
courses do not successfully promote trans-
fer. As discussed earlier, many of them empha-
size surface details of the code and depend
upon rote tutorials. These activities often make
knowledge inert – locked within the context in
which it was learned.

In education, there appears to be an implicit
assumption that transfer happens on its own.
For example, if students are immersed in writ-
ing code long enough, eventually they will fig-
ure out how to think procedurally. Research
has shown consistently that this is rarely the
case. To encourage transfer, it is best to teach
with transfer in mind.

Sketching courses tend to do this well
(although they may not invoke the theory of
transfer when doing so). In these basic studios,
it is understood by both teachers and students
that more is being taught than merely how to
draw. This is important because one of the keys
to transfer is priming the student – prepar-
ing them to see beyond the surface details and
mindfully abstract what they learn. Students
know that sketching is not the end, but the
means. Drawing is almost secondary to learn-

19	 For a good survey of this topic, see Butterfield,
Earl C., and Gregory D. Nelson. “Theory and Practice
of Teaching for Transfer.” Educational Theory Research
and Development 37 3 (1990): 5-38.

ing the basic concepts of representation and
form.

 How does one actively teach for trans-
fer? There are two commonly discussed meth-
ods. First, there is low road transfer, in which
the learner practices an activity extensively
and deliberately in a variety of situations to
the point of near automaticity. Essentially, one
over-learns something to the point where they
develop a behavioral response, an intuition.
But, to be clear, few courses are designed to
involve students in the amount of effort this
takes. In order for this kind of transfer to occur,
it can take a considerable amount of time.20

Second is high road transfer, in which lessons
are designed to promote a deliberate abstrac-
tion of principles. For instance, students might
be given several related examples and then
asked to come up with a principle they share.
Later, the same students would be asked to
determine if the principle applies in a series
of different situations. In this manner, the stu-
dents’ knowledge is effectively decontextual-
ized, made and not merely given.21 The trouble
with this method is that the material must be
presented in a highly specific way in order to
trigger transfer. Once again, most programming
courses do not have this kind of structure.

I believe sketching accomplishes transfer as a
combination of both methods. Students draw
a great deal, practicing to develop hand-eye
coordination but also internal generalizations
about types of form and visual and aesthetic
principles. In addition, students’ sketches are
used by the class to explicate and examine
principles. It is this structure, which promotes
both low and high road transfer, that I believe
programming classes ought to emulate.

Feedback

Imagine you are a golfer trying to improve
your game. Hoping to fix your swing, you
drive a few balls while your golf pro watches.
A week later – while you are putting – she
calls back and explains why your shots tend to
hook. How much do you think the pro’s advice
20	 Perkins, D. N., and Gavriel Salomon. “Are Cogni-
tive Skills Context-Bound?”, 1989. 16-25. Vol. 18.

21	 Perkins, D. N., and Gavriel Salomon. “Teach-
ing for Transfer.” Educational Leadership 46 1 (1988):
22-32.

will improve your drive? Probably not much.
And yet, this is analogous to the kind of feed-
back many designers receive in programming
courses.

Most students’ only practice with coding is
outside of class, in their homework or projects.
Because the grading process can take so long,
there can be a considerable lag between when
they submit their work and receive comments.
Often, students won’t hear back about their
programs until after the next lesson. By this
point, they have likely shifted their attention to
the new material. They have little motivation
or incentive to return to the old work and cor-
rect their mistakes.

In a traditional sketching class, students
receive active coaching while practicing. Feed-
back is frequent and timely. The teacher walks
around as students draw, assisting and mak-
ing comments. The low response time between
practice and feedback is beneficial to help-
ing students correct their performance. Basic
behavioral psychology tells us that reinforce-
ment occurs when treatment closely follows an
action. The sooner a student receives coaching,
the more likely they are to correctly interpret
the material. Ideally, coaching would occur
while they are engaged in a task.

The quality of feedback is also important. For
example, in a typical programming lab, stu-
dents may receive timely help, but it is seldom
constructive. When the lesson consists of fol-
lowing tutorials, feedback from the instructor
is not focused on an individual’s understand-
ing, but on making sure everyone completes
an instruction so the class can move on to the
next one.

In contrast, a sketching exercise, which does
not require a sequence of interdependent
steps, allows for a greater flexibility of pac-
ing. As such, the instructor can steer students
towards comprehension rather than compli-
ance – correcting any misunderstandings in
their mental model of the medium.

Sustained practice is essential to developing
skills and understanding, but repetition alone
is not enough. Feedback, at the right time and
of the proper type, is essential to making prac-
tice worthwhile.

ncdbs 2010

Conclusion

Computational production is reshaping pro-
fessions. To adapt and thrive, designers will
need procedural literacy. They must learn –
and learn from – programming. Unfortunately,
teaching programming successfully is a chal-
lenge. While most students can pick up a lan-
guage, they often fail to learn procedural think-
ing. The “sketching with code” framework,
described in the second half of this paper, is an
attempt to address the shortcomings of tradi-
tional programming and digital media courses
and steer students towards procedural literacy.

The components of the framework: improv-
ing students’ motivation, reducing task load,
teaching for transfer, and providing timely
feedback, are not new ideas in education. One
could say this is simply what good teachers do.
However, I have found through my research
and in my own experience that these elements
don’t often come together in programming
classes and this –not poor student aptitude or
unintuitive tools— is the reason why most stu-
dents are unsuccessful.

It is my hope that sketching might serve as
a familiar metaphor for design educators; a
reminder as to what the purpose and method
of teaching programming ought to be. We
sketch in order to think and such thinking
cannot be reduced to (or induced from) rote
instructions. It must be coached and cultivated
through deliberate practice over time. The rev-
erence and patience we reserve for teaching
students drawing ought to be applied to our
curriculum for computation. As manual sketch-
ing is to CAD plans and 3D models, so is basic
programming to the future of the profession.

Works Cited

Butterfield, Earl C., and Gregory D. Nelson.
“Theory and Practice of Teaching for Trans-
fer.” Educational Theory Research and Devel-
opment 37 3 (1990): 5-38.

Clear, Tony, et al. “The Teaching of Nov-
ice Computer Programmers: Bringing the
Scholarly-Research Approach to Australia.”
Tenth Australasian Computing Education
Conference (ACE2008). Ed.

Guzdial, Mark, and Elliot Soloway. “Computer
Science Is More Important Than Calculus:
The Challenge of Living up to Our Poten-
tial.” ACM, 2003. 5-8. Vol. 35.

Guzdial, Mark. “How We Teach Intro-
ductory Computer Science Is Wrong.”
Communications of the ACM (Octo-
ber 8, 2009). Accessed January 10, 2010
<http://cacm.acm.org/blogs/blog-
cacm/45725-how-we-teach-intro-
ductory-computer-science-is-wrong/
fulltext>

Kay, Alan. “The Early History of Smalltalk.”
ACM SIGPLAN Notices 28 3 (1993): 69-95.

Larsen, SF. “Procedural Thinking, Programming,
and Computer Use.” Proceedings of the
NATO Advanced Study Institute on Intelli-
gent Decision Support in Process Environ-
ments. Ed.

Linn, Marcia C. “The Cognitive Consequences
of Programming Instruction in Classrooms.”
1985. 14-29. Vol. 14.

Mateas, Michael. “Procedural Literacy: Educat-
ing the New Media Practitioner.” On The
Horizon. Special Issue. Future of Games,
Simulations and Interactive Media in Learn-
ing Contexts 13 1 (2005).

Pea, Roy D. “Beyond Amplification: Using the
Computer to Reorganize Mental Function-
ing.” Educational Psychologist 20 (1985):
167-82.

Perkins, D. N., and Gavriel Salomon. “Teach-
ing for Transfer.” Educational Leadership 46 1
(1988): 22-32.

Perkins, D. N., and Gavriel Salomon. “Are Cog-
nitive Skills Context-Bound?”, 1989. 16-25.
Vol. 18.

Sheil, B.A. “Coping with Complexity.” Infor-
mation Technology & People 1 4 (1983): 295

- 320.
Soloway, E. “Learning to Program = Learning to

Construct Mechanisms and Explanations.”
ACM, 1986. 850-58. Vol. 29.

	PDFFrontispiece'10
	006-Virtual01-NSenske_SketchingInCode.pdf

